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ABSTRACT: In the first part of the paper the problem of choosing
the granularity (size) of lockable obdjects is introduced and the
related tradeoff between concurrency and overhead is discussed. A
locking protocol which allows simultaneous locking at various
granularities by different transactions is presanted. It is based
on the introduction of additional lock modes besides the
conventional share mode and exclusive mode. A proof 1is given of
the equivalence of this protocol to a conventional one.

In the s=2cond part of the paper the issue of consistency in a
shared envircnment 1is analyzed. This discussion is motivated by
+he realization that some existing data base systems use automatic
lock protocols which insure protection only from certain types of
inconsistencies (for 1instance those arising from +ransacticn
backup), thereby automatically providing a 1limited degree of
consistancy. Four degrees of consistency are introduced. They
can be roughly characterized as follows: dagree 0 protects others
from your updates, degree 1 additionally provides protection from
losirg updates, degree 2 additionally providss protection fron
reading incorrect data 1items, and degree 3 additionally provides
protection from reading incorrect relationships among data items
(i.e. total protection). A discussion follows on the
relationships of the four degrees to locking protocols,
boncurrancy, overhead, recovery and transaction structure.

Lastly, these ideas are related to existing data management
systems,
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L. GRANULARITY JOF LOCKS:
An important problem which arises in the design of a data base
management system 1is choosing the lockable units, i.e. the data
aggregates which are atomically locked +to insure coasistency.
Examples of lockable units are areas, files, 1individual records,
field values, intervals of field values, et:c.

The choice of lockable units presents a tradeocff tLetween
concurrency and overhead, which is related to the size or
granularity of the units themselves. On the on2 hand, concurreancy
is increased if a fine lockable unit (for example a record or
field) 1is chosen. Such unit is appropriate for a "simple"
transaction which accesses few records. On the other hand a fine
unit of locking would be costly for a "complex" transaction which
accesses a large number of records. Such a transaction would have
to set/reset a large number of locks, hence incurring too many
times the computational overhead of accessing the lock subsysten,
and the storage overhead of representing a lock in memory. A
coarse lockable unit (for example a file) 1is probably convenient
for a transaction which accesses wmany records. However, such a
coarse unit discriminates against transactions which only want to
lock one member of the file. PFProm this discussion it follows that
it would be desirable to have lockable wunits of different
granularities coexisting in the same systen.

In the following a lock protocol satisfying these requirements
will be described. Related implementation issues of
scheduling,granting and converting lock requests are not
discussed. They were covered in a companion paper [1].

Hierarchical locks:

We will first assume that the set of razsourcas to be 1locked is
organized in a hierarchy. Note that the concept of hierarchy is
used in the context of a collection of resources and has nothing
to do with the data model wused in a data base systen. The
hierarchy of Figure 1 may be suggestive. We adopt the notation
that each level of the hierarchy is given a node type which is a
generic name for all the node instances of that type. For
example, the data base has nodes of type area as its immediate
descendants, each area in turn has nodes of type file as its
immediate dascendants and each file has nodes of type record as
its 1immediate descendants in the hierarchy. Since it 1is a
hierarchy each node has a unique parent.
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Figure 1. A sample lock hierarchy.

Each node of the hierarchy can be 1locked. If one requests
exclusive access (X) to a particular node, then when the request
is granted, the requestor has exclusive access to that node apnd
implicitly to each of its descendants. If one requests shared
access (S) to a particular node, then when the request is granted,
the requestor has shared access to that node and iamplicitly to
each descendant of that node. These two access modes lock an
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Our goal is +to find some technigue for implicitly locking an
entire subtree. In order to lock a subtrze rooted at node R in
share or exclusive mode it 1is important to prevent share or
exclusive locks on the ancestors of R which would implicitly lock
R and its descendants. Hence a new access node, intention mogde
(I), is introduced. Intention mode is wused to "tag" (lock) all
*ancastors of a node to be locked in share or exclusive mode. These
tags signal the fact that locking is being done at a "finer" level
and prevent implicit or explicit exclusive or share 1locks on the
ancestors.

The protocol to 1lock a subtree rooted at node R in exclusive or
share mode is to lock all ancestors of R in intention mode and to
lock node R in exclusive or share mode. So for example using
Figure 1, to lock a particular file one should obtain intention
access to the data base, to the area containing the file and then
request exclusive (or share) access to the file itself. This
implicitly locks all records of the file in exclusive (or share)
mode.,

—_——Cemam e eeamoS—e

We say that two lock requests for the same node by two different
transaction are compatible if they c¢an be granted concurrently.
The mode of the request determines its compatibility with requests
made by other +transactions. The +three modes: X, S and I are
incompatible with one another but distinct S requests may be
granted together and distinct I requests may be granted together.

The compatibilities among modes derive from their semantics.
Share node allows reading but not nodification of the
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corresponding resource by the regues+tor and by other
transactions. The semantics of exclusive mode is that the grantee
may read and modify the resource and no other transaction may read

or modify the resource while the exclusive lock 1is set. The
rzason for dichotomizing share and exclusive access is that
several share requests can be granted concurrently (are
compatible) whereas an exclusive request 1is not compatible with
any other request. Intention mode was introduc=zd to be
incompatible with share and ezclusive mode (to prevent share and
exclusive locks). However, intention mode is compatible with

itself since +two transactions having intention access to a node
will =2xplicitly lock descendants of the node in X, S or I mode and
thereby will either be compatible with one another or will be
schedulsad on the basis of their requests at the finer level. For
example, two transactions can be concurrently granted the data
base and some area and some file 1in intention mode. In this case
their explicit locks on records in the file will resolve any
conflicts among then.

The notion of intention mode is refined to intention share mode
(IS) and 1intention exclusive mode (IX) for two reasons: the
intention share mode only requests share or intention share locks
at the lower nodes of the tree (i.e. never requests an exclusive
lock below the intention share node). Since read-only is a common
form of access it will be profitable to distinguish this for
greater concurrency. Secondly, if a transaction has an intention
share lock on a node it can convert this to a share lock at a
later time, bu*t one cannot convert an intention exclusive lock to

. a share lock on a node (see [1] for a discussion of this point).

We rscognizs one further refinement of modes, namely share and

intention exclusive mode (SIX). Suppose one transaction wants to
read an =2ntire subtree and to update particular nodes of that
subtree, Using the modes provided so far it would have the

options of: (a) requesting exclusive access to the root of the
sebtree and doing no further locking or (b) requesting intention
exclusive access to the root of the subtree and explicitly locking
the 1lower nodes 1in intention, share or exclusive mode.
Alternative (a) has low concurrency. If only a small fraction of
the read nodes are updated then alternative (b) has high locking
overhead. The correct access mode would be share access to the
subtree thereby allowing the transaction to read all nodes of the
subtree without further locking and intention sxclusive access to
the subtree thereby allowing the transaction to set exclusive
locks on those nodes in the subtree which are tc be updated and IX
or SIX locks on the intervening nodes. Since this is such a
common cases, SIX mode is introduced for this purpose. It is
compatible with IS mode since other transactions requesting IS
pmode will explicitly lock 1lower nodes 1in IS or S mode thereby
avoiding any updates (IX or X mode) produced by the SIX mode
transaction. However SIX mode is not compatible with IX, S, SIX
or X mode requests. An equivalent approach would be to consider
only four modes (IS,IX,S5,X), but to assume that a transaction can
request both S and IX lock privileges on a resource.
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Table 1 gives the compatibility of the request modes, where for
completeness we have also introduced the pull mode (NL) which

represents the absence of requests of a resource by a
transaction.

L L_NL IS IX ____S SIX X__|

| NL | YES YES YES YES YES YES |

! IS | YES YES Y ES YES YES NO {

| IX { YES YES YES NO NO NO |

1 S | YES YES NO YES NO NO |

{f SIX | YES YES NO NO NO NO |

1.X 1_YES NO NO NO NO NO 1

Table 1. Compatibilities among access modes.

To summarizs, we recognize six modes of access to a resource:

NL: Gives no access to a node i.e. represents the absence of a
request of a resource.

IS: Gives intention share access to the requested node and allows
the requestor to 1lock descendant nodss in S or IS amode. (It
does no implicit locking.)

IX: Gives 1intention exclusive access to the requested node and
allows the requestor +to explicitly lock descendants in X, S,
SIX, IX or IS mode. (It does no implicit locking.)

S: Gives shares access to the requested node and to all descendants
of the requested nodes without setting further locks. (It
implicitly sets S locks on all descendants of the requested

node.)

SI¥: Gives shars and intention exclusive access to the requested
node. In particular it implicitly 1locks all descendants of
the nodz2 in share mode and allows the requestor to explicitly
lock descendant nodes in ¥, SIX or IX mode.

X: Givas exclusive access to the requested node and to all
descendants of the requested node without setting further
locks. (It implicitly sets X 1locks on all descendants.)
(Locking lower nodes 1in S or IS mode would give nd increased

access.)

IS mode is the weakest non-null form of access to a resource. It
carries fewer privileges than IX or S modes. IX mode allows IS,
IX, S, SIX and X mode locks to be set on descendant nodes while S
mode allows read only access to all descendants of the node
without further locking. SIX mode carries the privileges of S and
of IX mode (hence the name SIX). X mode is the most privileged
form of access and allows reading and writing of all descendants
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of 2 node without further locking. Hence the modes can be rank=zd
in the ©partial order (lattice) of privileges shown in Pigure 2.

Note that it 1is not a total order since IX and S are
incomparable.
X
{
{
SIX
{
—_—
| |
| |
S IX
| {
oo |
|
|
IS
|
|
NL

Figure 2. Th= partial ordering of modes by their privileges.

Rules for rzguesting nodes:

- -The impliczit 1locking of nodes will not work if +transactions are
allowed to leap into the middle of the tree and begin locking

nodes at random. The 1implicit locking implied by the S and X

nodes d=2pands on all transactions obeying the following protocol:

(a) Before requesting an S or IS 1lock on a node, all ancestor

nodes of the requested node must be held in IX or IS mode by
the requestor.

(b) Before requesting an ¥, SIX or IX lock on a node, all ancestor

nodes of the requested node must be held in SIX or IX mode by
the requestor.

(c) Locks should be released either at the end of the transaction
(in any order) or in leaf to root order. In particular, if
locks are not held to end of transaction, one should not hold
a lower lock after releasing its ancestor.

—— o o —— e ot ot W

leaf +to root. Notice that 1leaf nodes are never requested 1in
intention mode since they have no descendants.

Several examples:

It may be instructive to give a few examples of hierarchical
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raquest sagquenca2s:

To lock record R for read:

lock data-base with mode = IS
lock area containing R with mode = IS
lock file containing R with mode = IS
lock record R with mode = S

Don't panic, the transaction probably already has the data base,
area and file lock.

To lock record R for write-exclusive access:
lock data-base with mode = IX
lock area containing R with mode = IX
lock file containing R with mode = IX
lock record R with mode = X

Note that if the records of this and the pravious example are
distinct, each request can be granted simultaneously to different
transactions even though both refer to the same file.

To lock a file F for read and write access:

lock data-base with mode = IX
lock area containing F with mode = IX
lock fila ¥ with mode = X

Since this reserves exclusive access to ths file, i1f this request
uses the same file as the previous two exanples it or the other
transactions will have to wait.

To lock a file F for complete scan and occasional update:

lock data-base with mode = IX

lock area containing F with mode = IX

lock filzs F with mode = SIX
Thereafter, particular records in F can be locked for wupdate by

locking records in X mode. Notice that (unlike the ©previous
example) this transaction is compatible with the first example.
This is the reason for introducing SIX mode.

To quiesce the data base:

lock data base with mode = X.
Note that this locks everyone else out.

Directed acyclic graphs of locks:

The notions so far introduced can be generalized to work for
directed acyclic graphs (DAG) of resources rather than simply
hierarchiss of resources. A tree is a simple DAG. The Kkey
observation is that to implicitly or explicitly lock a node, one
should lock all the parents of the node 1in the DAG and so by
induction lock all ancestors of the node. In particular, to lock
a subgraph one must implicitly or explicitly lock all ancestors of
the subyraph in the approprizate mods (for a tree there is only one
parent). To give an example of a non-hierarchical structure,
imagine the locks are organized as in Figure 3.
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Figure 3. A non-hierarchical lock graph.

We postulate that areas are "physical™ notions and that files,
indices and records are logical notions. The data base is a
collection of areas. Each area 1s a collection of files and
indices. Each file has a corresponding index in the sane area.
Each record belongs to some file and to 1its corresponding index.
A ra2cord is comprised of field values and some field is indexed by
the index associated with the file <containing the record. The
fils gives a s2quential access path to the records and the index
gives an associlative access path to the <records based on £field
values. Sincs individwal fields are never locked, they do not
appear in the lock graph.

To writz a record R in file F with index I:

lock data base with mode = IX
lock area containing F with mode = IX
lock file F with mode = IX
lock index I with mode = IX
lock record R with mode = X

Note that all paths to record R are 1locked. Alternaltively, one

could lock F and I in exclusive mode thereby implicitly locking R
in exclusive mode.

To give a more complete explanation we observe that a node can be
locked explicitly (by requesting it) or implicitly (by appropriate
explicit locks on the ancestors of the node) in one of five modes:
Is, 1X, S, SIX, X. However, the definition of implicit locks and

the protocols for setting explicit locks have to be extended as
follows: ;

A node " is implicitly granted in S mode to a transaction 1if at
least one of its parents is (implicitly or explicitly) granted to
the transaction in S, SIX or X mecde., By induction that means that
at least one of the node's ancestors must be explicitly granted in
S, SIX or ¥ mode to the transaction.

A nods is implicitly granted in X mode if all of its parents are

-8-



(implicitly or =2xplicitly) granted to the tramsaction in X mode.
By induction, this 1is equivalent to the condition that all nodes
in some cut set of the collection of all paths leading €from the
node to the roots of the graph are explicitly granted to the
transaction in X mode and all ancestors of noles in the cut set
are explicitly granted in IX or SIX mode.

From Figure 2, a node is implicitly granted in IS mode if it is
implicitly granted in S mode, and a node is implicitly granted in
IS, IX, S and SIX mode if it is implicitly granted in ¥ mode.

The protocol for =xplicitly requesting locks on a DAG:

(a) Before raquesting an S or IS 1lock on a node, one should
request at least one parent (and by induction a path to a
root) in IS (or greater) mode. As a consequence none of the
ancestors along this path <can be granted to another
transaction in a mode incompatible with IS.

{b)y Reforz ra2questing I¥X, SIX or X mods access to a node, one
should request all parents of the node in IX (or greater)
mode. As a consequence all ancestors will be held in IX (or
greater mode) and <cannot be held by other +transactions in a
mode incompatible with IX (i.e. S, SIX, X).

{c) Locks should be released either at the end of the transaction
(in any order) or in leaf to root order. In particular, if
locks are not held to the end of transaction, one should not
heold a lower lock after releasing its ancestors.

To give an example using Pigqure 3, a sequential scan of all
records in file P need not use an index so one can get an implicit
share lock on each record in the file by:

lock data base with mode = IS
lock area containing F with mode = IS
lock file F with mode = S

This gives implicit S mwmode access to all records 1in F,
Conversely, to read a record in a file via the index I for file P,
one need not get an implicit or explicit lock on file F:

lock data base with mode = IS
lock area containing R with mode = IS
lock index I with mode = S

This again gives implicit S mode access to all records in index I
(in file F). In both these cases, only one path was locked for
reading.

But to insert, delete or update a record R in file F with index I
one must get an implicit or explicit lock on all ancestors of R.

The first example of this section showed how an explicit X lock on
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a racori is obtained. To get an implicit X lock on all records in
a file one can simply lock the index and file in X mode, or lock
the arsa in X moda2. The latter examples allow bulk lcad or update
of a file without further locking since all records in the file
ara implicitly granted in X mode.

Proof of =2quivalencs of the lock protocol.

Fe will now prove that the described lock protocol is eguivalent
to a conventional one which wuses only two modes (S aand X), and
which locks only atomic resources (leaves of a tree or a directed

graph) .

Let G = (N,A) be a finite (directed) graph where ¥ is the set of
nodes and A 1is the set of arcs., G 1is assumed to be without
circuits (i.e. there is no non-null path 1leading from a node n to
itself). A node p is a parent of a node n and n 1is a child of p
if there is an arc from p to n. A node n is a source (sink) if n
has no parents (no children). Let SI be the set of sinks of G.
An ancestor of node n is any node (includirg n) in a path from a
source to n. 34 node-slice of a sink n is a collection of nodes
such that e2ach path from a source to n contains at least one of

these nodes.

We 3also introduce the set of lock modes M = {¥WL,IS,IX,S,SIX,X} and
the compatibility matrix € : MxM->{YES,NO} described in Table 1.
Fe will call ¢ : oxm->{YES,NO} the restriction of € tom =
{NL,S,X}.

A lock-graph is a mapping L : N->M such that:

) if L(n) € ({IS,S} then either n is a source or there exists a
parsnt p of n such that L{(p) € {IS,IX,S,SIX,X}. By induction
there exists a path from a source to n such that L takes orly
values in (IS,IX,S,SIX,X} on it. Equivalently L is not equal
to ¥L on the path.

(by if L(n) € {IX,SIX,X} then either n is a root or for all
parents pl...pk of n we have L{(pi) € {IX,SIX,X} ({=1...k). By
induction L takes only valyes in {IX,SIX,X} on all the
ancestors of n.

The interpretation of a 1lock-graph is that it gives a map of the
explicit locks held by a particular transaction observiang the six
state lock protocol described above. The notion of projection of
a lock-graph is now introduced to model thz set of implicit locks
on atomic resources correspondingly acquired by a transaction.

The projection of a lock-graph L 1is the mapping 1l: SI->n

constructad as follows:

(a) 1(n)=X if there exist a node-slice {nl...as} of n such that
L{niy=¥X (1i=1...ns8).

(b) 1(n)=s if (a) 1is not satisfied and there exist aa ancestor a
of n such that L(a) € {S,SIX,X}.

{c) 1l(n)=NL if (a) and (b) ‘are not satisfied,.
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Two lock-graphs L1 and L2 are said to be compatible if
C(L1(n),L2(n)) =YES for all n € N. Similarly two projections 11
and 12 are compatible if ¢ (11(n) ,12(n))=YES for all n & SI.

We are now in a position to prove the following Theorem:

If two lock-graphs L1 and L2 ar=s compatible then their projections
11 and 12 are compatible.In other words if the explicit locks set
by two transactions are not conflicting then also the three-state
locks implicitely acquired are not conflicting.

Proof: Assume that 11 and 12 are incompatible. We want to prove
that L1 and L2 are incompatible. By definition of compatibility
there must exist a sink n such that 11(n)=X and 12 (n) € {S5,X} (or
vice va2rsa). By definition of projection there nmust exist a
node~-slice {nl1...ns} of n such that L1(n1)=...=L1(ns)=X. Also
there must =2xist an ancestor n0 of n such that L2 (n0) € (5,SIX,X}.
From the definition of lock-graph there is a2 path P1 from a source
to n0 on which L2 does not take the value NL.

If P1 1intersects the node-slice at ni then L1 and L2 are
incompatible since L1(ni)=X which is incompatible with the non
null valus of L2 (ni). Hence the theorem is proved.

Alternatively there 1s a path P2 from n0O ¢to the sink n which
intersects the node-slice at i, From the definition of
lock-graph L1 takes a value in {IX,SIX,X} on all ancestors of ni.
In particular L1(n0) € {IX,SIX,X}. Since L2(n0) € ({S,SIX,%} we
have C(L1(n0),L2 (n0))=NO. Q. E. D.

Dynamic lock graphs:

Thus far we have pretended that the lock graph is static.
However, examination of Figure 3 suggests otharwise. Areas, files
and indicss are dynamically created and destroyed, and of course
records are continually inserted, updated, and deleted. (If the
data base 1is only read, then there is no need for locking at
all.)

The lock protocol for such operations is nicely demorstrated by
the implementation of index interval locks. Rather than being
forced to lock entire indices or individwual records, we would
like to be able to lock all records with a certain iadex value;
for example, 1lock all records in the bank account file with the
location field equal to Napa. Therefore, the index is partitioned
into lockable ka2y value intervals, Each indexed record "belongs"
to a particular index interval and all «racords in a file with the
same field valus on an indexed field will belong to the same key
value interval (i.e. all Napa accounts will belong t2 the same
interval). This new structure is depicted in Figure 4.

DATA BASE
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Figqure 4. The lock graph with key interval locks.

The only subtle aspect of Figure 4 is +the dichotoay between
indexed and un-indexed fields and the fact that a key value
interval is the parent of both the record and its indexed fields.
Since the field value and record identifier (data base key) appear
in the index, one can read the field directly (i.e. without
touching the r=cord). Hence a key value interval is a parent of
the corresponding field values. On the other hand, the index
"points" via record identifiers to all records with that value and
so is a parent of all records with that field value.

Since Figure 4 defines a DAG, the protocol of the previous section
can be used to lock the nodes of the graph. However, it should be
extended as follows. When an indexed field is updated, it and its
parent record move from one index interval +to another. So for
exampls when a Napa account is moved to the St. Helena branch, the
account record and its location field "leave'" the Napa interval of

the location index and " Jjoin" the St. Helena index interval. #hen
a naw record is inserted it "joins" the interval contairing the
new field value and also it "joins" the file. Deletion removes

the record from the index interval and from the file.

The lock protocol for changing the parents of a node is:

(d) Before moving a node in the lock graph, the node must be
implicitly or explicitly granted in X mode in both its old and

its new position in the graph. Further, the node must not be
moved in such a way as to create a cycle in the graph.
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So to carry out the example of this section, to move a Napa bank
account to the St. Helena branch one would:

lock data base in mode = IX
lock area containg accounts in mode = IX
lock accounts file in mode = IX
lock location index in mode = IX
lock Napa interval in mode = IX
lock St. Helena interval in mode = IX
lock rescord in mode = IX
lock field in mode = X,

Alternatively, ona «could get an implicit lock on the field by

requesting explicit X mode locks on the record and index
intervals.
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The data base consists of entities which are known to be
structured in certain ways. This structure is best thought of as

assertions about the data. Examples of such assertions are:
'Names is an index for Telephone_nunbers.'

'The value o0f Count_of_x gives the number of enployees in
department x.'!

The data base is said to be consistent 1if it satisfiss all its

assertions ([2]. In some cases, the data basz2 must becone
temporarily inconsistent in order to transform it to a new
consistent state,. For example, adding a new employee 1involves

several atomic actions and the updating of several fields. The
data base may be inconsistent until all these updates have been
comple ted.

To cope with these temporary inconsistencies, sequences of atomic
actions are grouped to form transactions. Transactions are the
anits of consistency. They are larger atomic actions on the data
base which +transform it from one «consistent state to a new
consistent state. Transactions preserve consistency. If sone
action of a transaction fails then the wentire transaction is
'undone' thereby returning the data base to a consistent state.
Thus transactions are also the units of recovery. Hardware
failure, system error, deadlock, protection violations and progranm
error are each a source of such failure. The system may enforce
the consistency assertions and undo a transaction which tries to
leave the data base in an inconsistent state.

If transactions are run one at a time then each transaction will
see the consistent state left behind by its predecessor. But if
several transactions are scheduled <concurrently then locking is
required to 1insure that the inputs to =each transaction are
consistent.

Responsibility for requesting and releasing locks can be either
assumed by the user or delegated to the system. User controlled
locking results in potentially fewer locks due to the user's
knowledge o0f the semantics of the data. On the other hand, user
controlled locking requires difficult and potentially unreliable
application programming. Hence the approach taken by some data
base systems is +to wuse automatic lock protocols which inpsure
protection from general types of inconsistencies, while still
relying on the user to protect himself against other sources of
inconsistencies. For example, a system may automatically 1lock
updated r=2cords but not records which are read. Such a systen
prevents lost updates arising from transaction backup. Still, the
user should explicitly lock records in a read-update sequence to
insure that the read value does not change before the actual
update. In other words, a user 1is guaranteed a limited automatic
degree of consistency. This degqree of consistency wmay be systenm
wid=2 or the systsa may provide options to select it (for instance
a lock protocol may be associated with a transaction or with an
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entity).

We now present several equivalent definitions of four consistency
degrees:

Informal definition of consistency:

An output (write) of a transaction is committed when the
transaction abdicates the right to 'undo' the write thereby making
the new value available to all other transactions. Jutputs are
said to be uncommitted or dirty if they ars not vyet committed by
the writer. Concurrent execution raises the problem that reading
or writing other transactions' dirty data may yield inconsistent
data.

Using this notion of dirty data, the degrees of consistency may be
defined as:

Definition 1:

Degree 3: Transaction T sees degree 3 consistency if:
(2) T does not overwrite dirty data of other transactions.
(b) T does not commit any writes wuntil it completes all its
writes (i.e. until the end of transaction (E0T)).
(c) T does not read dirty data from other transactions.

(d) Other transactions do not dirty any data read by T before T
completes,

Degree 2: Transaction T sees degree 2 consistency if:
(a) T does not overwrite dirty data of othsr transactioans.
(b) T does not commit any writes before EOT.
(c) T does not read dirty data of other transactions.

Degree 1: Transaction T sees deqree 1 consistency if:
(a) T does not overwrite dirty data of other transactions.
{b) T does not commit any writes before EOT.

Degree 0: Transaction T sees dsgree 0 consistency if:
(@) T does not overwrite dirty data of other transactions.

Note that if a transaction sees a high degree of consistency then
it also sees all the lower degrees.

These dJdefinitions have implications for +transaction recovery.
Transactions are dichotomized as recoverable transactions which
can be undone vithout affecting other tramnsacticns, and
unrscoverable transactions which cannot bz undone because they
have committed data to other +transactions and to the external
world. Unrecoverable transactions <cannot be undone without
cascading transaction backup to other transactions and to the
external world (e.qg. ‘unprinting®* a message is usually
impossible). If the system is to undo individual transactions

without cascading backup to other transactions then none of the

-15~-



transaction's writes can be committed before the end of +the
transaction. Otherwise some other transaction could further
update the entity thereby making it impossible to perforn
transaction backup without propagating backup to the subsequent
transaction.

Degree 0 consistant transactions are unrecoverable because they
commit outputs before the end of tramsaction. If all *transactions
see at least degree 0 consistency, then any transactioa which is
at least d=gre= 1 consistent is recoverable because it does not
commit writes before the end of the transaction. For this reason,
many data base systems require that all transactions see at least

degree 1 consistency in order to guarantee that all tramsactions
are recoverable.

Pegree 2 consistency 1isolates a transaction from the uncommitted
data of other transactions. With degree 1 consistency a
transaction might read uncommitted values which are subsequently
updated or are undone.

Degree 3 consistency isolates the +transaction from dirt

relationships among entities. For example, a degree 2 consistent
transaction may read two different (committed) values if it reads
th=2 same entity twice. This 1is because a transaction which
updates the entity could begin, update and end in the interval of
time between the two reads. More elabecrate kinds of anomaiies due
to concurrency are possible 1f one updates an entity after reading
it or if mor=s than one entity is involved (see -exanmple below).
Degree 3 consistency completely 1isolates the transaction fron
inconsistencies due to concurrency.

To give an example which demonstrates +the application of these
several degrees of consistency, imagine a procass control system
in which some transaction 1is dedicated +to reading a gauge and
periodically writing batches of values into a list. Each gauge
readirng is an individual entity. For performance Treasons, this
transaction sees degree O consistency, committing all gqauge
readings as soon as they enter the data base. This transactiocn is
not recoverable (can't be undone). A second transaction 1is run
periodically which reads all the recent gauge readings, computes a
mean and variance and writes these computed values as entities in
the data base. Since we want these two values to be consistent
with one another, they must be committed together (i.e. one cannot
commit the first before the second is written). This allows
transaction undo in the case that it aborts after writing only one
of the tvo values. Hence this statistical summary transaction
should see degree 1. A third transaction which reads the mean and
writes it on a display sees degree 2 consistency. It will not
read a mean which might be ‘'undone' by a backup. Another
transaction which reads both the mean and the variance must see
deqree 3 consistency to insure that the mean and variance derive
from the same computation {i.e. the same run which wrote the mean
also wrote the variance).
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Whether an instantiation of a transaction sees degree 0, 1, 2 or 3
consistzancy depends on the actions of other concurrent
transactions. Lock protocols are used by a transaction to
guarantee itself a certain degree of consistency independent of
the behavior of other transactions (so long as all transactions at
least obsarve the degree 0 protocol).

The degrezs of consistency can be operationally defined by the
lock protocols which produce them. A transaction locks its inputs
to guarantes their consistency and locks its outputs to mark thenm
as dirty (uncommitted). Degrees 0, 1 and 2 ar=s important because
of the efficiencies implicit in these protocols. Obviously, it is
cheaper to lock less.

Locks are dichotomized as share mode locks which allow multiple
readers of the same entity and exclusive mocde locks which resecve
exclusive access to an entity. Locks may also be characterized by
their duration: locks held for the duration of a single action are
called short duration locks while locks hsld to the end of the
transaction are called long duration locks. Short duration locks
are used to mark or test for dirty data for the duration of an
action rather than for the duration of the transaction.

The lock protocols are:
Definition 2:

Degree 3: transaction T obssrves degree 3 lock protocol if:

(2) T sets a long exclusive lock on any data it dirties.
(b) T sets a long share lock on any data it reads.

Degree 2: transaction T observes degrese 2 lock protocol if:
(a) T sets a long exclusive lock on any data it dirties.
(b) T sets a (posibly short) share lock on any data it reads.

Degree 1: transaction T obssrves degqree 1 lock protocol if:

s e e

(a) T sets a long exclusive lock on any data it dirties.

Degree 0: transaction T obssrves degree 0 lock protocol if:

(a) 7T sets a (possibly short) exclusive 1lock on any data it
dirties.

The lock proteccol definitions can be stated more tersly with the
introduction of the following mnotation. A transaction is ywell
formed with respect to writes (reads) if it always locks an entity
in exclusive (shared or exclusive) mode before writing (readingq)
it. The transaction is well formed if it 1is well formed with

respect to reads and writes.

A transaction is two phase (with respect to reads or updates) if

it does not (share or exclusive) 1lock an_gntity after unlocking
some entitv. A two phase transaction has 3 growing phase during
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which it acquires locks and a shrinking phass during which it
relzsases locks.

Dz2finition 2 is too restrictive in the sense tha*t consistency will
not requirs that a transaction hold all locks to the EOT (i.e. the
EOT 1s the shrinking phase); rather +the constraint that the
transaction be two phase is adaquate to insure consistency. On
the other hand, once a transaction unlocks an updated entity, it
has comaitted +that entity and so «cannot be undone without
cascading backup to any transactions which may have subsequently
read the entity. For that reason, the shrinking phase is usually
deferred to the end of the transaction so that the traasaction is
always recoverable and so that all wupdates are connitted
together. The lock protocols can be redefined as:

Definition 2':

Degree 3: T 1is well formed
and T is two phase.

is well formed
is two phase with respect to writes.

Degres 2:
and

+3 -3

Degree 1:
and

is w=2ll formed with respect to writes
is two phase with respect to writes.

M 3

Degre=2 0: T is well formed with respect to writes.

A1l transactions are required to observe the degree 0 1locking
protocol so that they do not update the uncommitted updates of
others. Degrees 1, 2 and 3 provide increasing system-gquaranteed
consistancy.

Consistency of schedules: '

The deofinition of what it means for a transaction to see a degree
of consistency was originally given in terms of dirty data. 1In
order to make the notion of dirty data explicit it is necessary to
consider the exscution of a transaction in the context of a set of
concurrently executing transactions. To do this we intraduce the
notion of a schedule for a set of transactions. A schedule can be
thought of as a history or audit trail of the actions performed by
the set of transactions. Gven a schedule the notion of a
particular entity being dirtied by a particular transaction 1is
made 2xplicit and hence the notion of seeing a certain degree of
consistency is formalized. These notions may then be used to
connect the various definitions of consistency and show their
equivalence.

The systsm dirsctly supports entities and actions. Actions are

categorized as begin actions, end actions, share lcck actions,
exclusive lock actions, unlock actions, read actions, and write

actions. An end action is presumed to unlock any locks held by
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+he transaction but not explicitly unlocksd by the transaction.
For the purposes of the following definitions, share lock actions
and their corresponding unlock actions are additionally considered
to be read actions and exclusive lock actions and their
corresponding unlock actions are additionally considered to be
write actions.

A transaction 1is any sequence of actions beginning with a begin
action and ending with an end action and not containing other
begin or =nd actions.

Any (sequence preserving) merging of +the actions of a set of
transactions into a single sequence 1s called a schedule for the
set of transactions.

A scheduls is a history of the order in which actions are executed
(it does not record actions which are undone due to backup). The
simplest schedules run all actions of one transaction and then all
actions of another transaction,... Such one-transaction-at-a-tinme
schedules are called serial because they have no concurrency among
transactions. Clearly, a serial scheduls has no concurrency
induc=24 inconsistasncy and no transaction s=es dirty data.

Locking constrains the set of allowed schedules. 1In particular, a
schedule 1is l=2gal only if it does not schedule a lock acticn on an
entity for one transaction when that entity is already locked by
some other transaction in a conflicting mode.

An initial state and a schedule completely define the system's
behavior. At each step of the schedule one can deduce Wwhich
entity valuss have been committed and which are dirty: if locking
is used, updated data is dirty until it is unlocked.

Since a schedule makes the definition of dirty data explicit, one
can apply D2finition 1 to define consistent schedules:

Definition 3:

A transaction runs at degqree 0 (1, 2 or 3) consistency in schedule
S 1if T sees degr2e 0 (1, 2 or 3) consistency in S.

If all +transactions run at degree 0 (1,2 or 3) consistency in
schedule S then S is said to be a degqree 0 (1, 2 or 3) consistent
scheduls.

+ion 1:

f each transaction observes the degree 0 (1, 2 or 3) lock
protocol (Definition 2) then any legal schedule 1is degree 0
(1, 2 or 3) consistent (Definition 3) (i.e, each transaction
sees degree ¢ (1, 2 or 3) consistzncy in the sensz of
Definition 1),

(bp) Unless transaction T observes the degree 1 (2 or 3) lock
protocol then it is possible to define another tramsactican T'
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which does observe the degree 1 (2 or 3) 1lock protocol such
that T and T'* have a legal schedule S but T does n>t run at
degre=2 1 (2 or 3) consistency in S.

Assertion 1 says that if a transaction observes the lock protocol
definition of consistency (Definition 2) than it is assured of the
informal definition of consistency based on coamitted and dirty
data (Definition 1). Unless a transaction actually sets the locks
prascribed by degree 1 (2 or 3) consistency one can construct
transaction mixes and schedules which will cause the transaction
to run at ({s=e) a lower degree of consistzancy. However, in
particular cases such transaction mixes may never occur due to the
structure or use of the systen. In these cases an apparently low
degree of locking may actually provide degree 3 consistency. For
example, a data base reorganization usually need do no locking
since it is run as an off-line utility which is never run
concurrently with other transactions.

Asssrtion 2:

If each t“ransaction in a set of transactions at least observes the
degree 0 lock protocol and if transaction T observes the degree 1
(2 or 3) 1lock protocol then T runs at dsgree 1 (2 or 3)
consistancy (De2finitions 1, 3) in any legal schedule for the set
of +ransactions.

Assertion 2 says that each transaction can choose its degrse of
consisteancy so long as all transactions observe at least degree 0
protocels. Of course the outputs of degres 0, 1 cr 2 consistent

transactions nmay be degree 0, 1 or 2 consistent (i.e.
inconsistent) because they were computed with potentially
inconsistent inputs. One can imagine that each data entity is
tagged with the degree of consistency of its writer. A

transaction must beware of reading entitiss tagged with degrees
lower than the degree of the transaction.

_— et m el s e

One transaction 1is said to depend on another if the £first takes
some of its inputs from the second. The notion of dependency is
defined differently <for each degree of consistency. These
dependency relations are completely defined by a schedule and can
be useful in discussing consistency and recovery.

Fach schedule d=fines three relations: <, << and <<< on the set of
transactions as follows. Suppose that +transaction T performs
action a on entity e at some step in the schedule and that
transaction T' performs action a' on entity e at a later step in
th=2 schedulz. Further suppose that T does not egual T'. Then:

T << T' if a is a write action and a' is a write action
or a 1is a write action and a' is a read action
or & is a read action and a* is a write action

T << T if a is a write action and at' is a write action
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or a is a write actiosn and a' is a read action

T < T if a is a write action and a' is a write action

The following table is a notationally convenient way of seeing
these d=finitions:

<<< : W=DW | W=>R | R->W
<< + H=>W | W->R
< :+ W->W

meaning that (for example) T << T' if T writes (W) something
later read (R) by T' or written (W) by T' or T reads (R) something
later written (W) by T'.

Let <* be the transitive closure of <, then define:
BEFORE1 (T) = {T'| T' <* T}
AFTERTI(T) = {T'| T <* Tt}.

The sets BEFDREZ, AFTER2, BEFORE3 and AFTER3 are defined
analogously for << and <<<.

The obvious interpretation for this is that each BEFJIRE set is
the set of transactions which contribute 1inputs to T and each
AFTE®R s2t is the set of transactions which take their inputs from
T (where the ordering only considers dependencies induced by the

, .corresponding consistency degree).

If some transaction is both before T and after T in some schadule
then no serial schedule could give such results. In this case
concurrency has introduced 1inconsistency. On the other hand, if
all relevant transactions are either beforz or after T {but not
both) then T will see a consistent state (of the corresponding
degree). If all transactions dichotomize others in this way then
the relation <* (K<* or <<<*) will be a partial order and the
whole schedule will give degree 1 (2 or 3) consistency. This can
be strengthened to:

Assertion 2:

A schedulz is deqree 1 (2 or 3) consistent if and only if
the relation <* (K<* or <<<*) is a partial order.

The <, << and <<< relations are variants of the dependency sets
introduced in {2]}. In that paper only dzagresz 3 consistency is
introduced and Assertion 3 was proved for that case. In
particular such a schedule is egquivalent to the serial schsdule
obtained by running the transactions one at a time 1in <<< order.
The proofs of [27] generalize fairly easily to handle assertion 1
in the case of dz2gree 1 or 2 consistency.

Consider the following example:
™1 LOCK -\
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T1 READ A
T7 TONLOCK A
T2 LOCK A
T2 WEITE A
T2 LOCK B
T2 WRITE B
T2 OUONLOCX &
T2 UNLOCK B
T1 LQCK B
T1 WRITE B
T1 UNLOCX B

In this scheduls T2 gives B to T1 and T2 updates A after T1 reads
A so T2<T1, T2<<KT1, T2<<K<T1 and T1<<KLKT2. The schedule is degrese 2
consistent but not degree 3 consistent. It runs T1 at degree 2
consista2ncy and T2 at degree 3 consitency.

It would be nice to define a transaction to see degree 1 (2 or 3)
consistency if and only if the BEFORE and AFTER sets are disjoint
in some schedule. However, this is not restrictive enough, rather
one must require that the before and after sets be disjoint in all
schedulss in order to state Definition 1 in teras of
dependencies. Further, there seems to be no natural way to define
the dependencies of degree 0 consistency. Hance the principal
application of the dependency definition is as a proof technigque
and for discussing schedules and recovery issues.

Relationship to transaction backup and system Cecovery:

As mentioned previocusly, system wide degree 1 consistency allovws
transaction backup and system recovery without 1lost updates.
(i.e. without affecting wupdates of transactions which are not
being backed up). The transaction 1is unrecoverable after 1its
first commit of an update (unlock) and so although degree 1 does
not require it, the shrinking phase is usually deferred to the end
of transaction so that the transaction is recoverable.

Given any current state and a time ordered log of the updates of
transactions, one can Teturn to a consistent state by un-doing
any incomplete transactions (uncommitted updates). Given a
checkpoint at time TO and a log which records old and new values
of a2ntitias wup to time TO+e, one <can construct the most recent
consistent state by undoing all wupdates which were 1zade before
time TC but were not yet committed at time TO+e; and by redoing
all updates which were made and committed in the interval TO to
TO+e. If the schedule (logqg) is degree 0 consistent then the
actions can be re-don=2 LOG order (skipping uncommitted updates).
If the schedule (log) is degree 1 consistent then the actions can
be sort=2d by transaction in <* order and recovery performed with
the sorted log. The outcome of this process will be a state
raflecting all the <changes made by all transactions which
conpleted before the log stopped.

Howevar, degree 1 consistent transactions may read uncommitted
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(dirty) data. Transaction and systen T2covVery may uando
uncommittad updates. So if the degree 1 consistent transaction is
re-run (i.e. re-exacuted by the system) 1in the absence of the
undone *ransactions it may produce entirely different results than
would be obtain=d if the <transaction were blindly re-done (from
the updates recorded in the log). If the system 1is degree 2
consistent than no transaction reads uncommitted data. So if the
completed transactions are re-done in log order but in the absence
of some undone (incomplete) transactions they will give exactly
the same results as wer= obtained 1in the presance of the undone
transactions. In particular, 1if the transactions were —re-run in
the order specified by the log but in the absesnce of +he undone
transactions the same consistent state would result.
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LOCK HIERARCHIES AND DEGREES OF CONSISTENCY IN EXISTING

—————— - D e

IMS/VS with the program isolation feature [3] has a two level lock
hierarchy: segment types (sets of records), and segment instances
(records) within a segment type. Segment types may be lccked in
EXCLOUSIVE (E) nmode {which corresponds to our exclusive (X) mode)
or in EXPRESS RFAD (R), RETRIEVE (G), or UPDATE (7) (=ach of
which correspond to our notion of inteantion (I) mode) [ 3 page
3.18-3.27]. Segnment instances can be locked in share or exclusive
mode. Segment type locks are requested at transaction initiation,
usually in intention mode. Segment instances locks are dynamically
set as the transaction proceeds. In addition IMS/VS has user
controlled share locks on segment instances (the *Q option) which
allow other read requests but not other *Q or exclusive requests.
IMS/VS has no notion of S or SIX 1locks on seyment types (which
would allow a scan of all members of a sagment type concurrent
with othsr readers but withoat +the overhead of 1locking each
segment instance). Since IMS/VS does not support 5 aode on
s2gment typ2s one need not distinguish the two intention modes IS
and IX (see the section introducing IS and IX modes). In general,
IMS/VS has a notion of intention mode and does implicit locking
but does not recognize all the modes described here. It uses a
static two level lock tree.

IMS/VS with the program isolation featurs basically provides
degree 2 consistency. Hovever degree 1 consistency can be obtained
on a segment type basis in a PCB (view) by specifying the EXPRESS
READ option for that segment. Similarly degree 3 consistency can
te obtained by specifying the EXCLUSIVE option. IMS/VS also has
the user controlled share locks discuss=d above which a program
can rsquest on selected segment instances +to obtain additional

consistency over the degree 1 or 2 <consistency provided by the
systen.

IMS/VS without the program 1isolation feature (and also the
previous version of IMS namely 1IMS/2) doesn't have a 1lock
hierarchy since locking is done only on a segment type basis. It
provides degree 1 consistency with degree 3 consistency obtainable
for a segment type in a view by specifying ths EXCLUSIVE option.
Usar controlled 1locking is also provided on a limited basis via
the HOLD optiorn.

DMS 1100 has a two level 1lock hierarchy [4]: areas and pages
within arszas. Aresas may be locked in one of seven modes when they
are OPENed: EXCLUSIVE RETRIEVAL (which corresponds to our notion
of exclusive mod2), PROTECTED UPDATE (which corresponds to our
notion of share and intention exclusive mod=2), PROTECTED RETRIEVAL
(which w2 call share mode), UPDATE (which correspoads to our
intention exclusive mode), and RETRIEVAL (which is our intention
share mode). Given this transliteration, the compatibility matrix
displayed in Table 1 is identical to the compatibility matrix of
D¥S 1100 (4, page 3.59]. However, DS 1100 sz2ts only exclusive
locks on pages within areas (short term share locks are invisibly
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set during 1internal pointer following). Further, even 1f a
transaction locks an area in exclusive mode, DMS 1100 continues to
set exclusive locks (and internal share locks) on the pages in the
area, despite the fact that an exclusive lock on an area precludes

reads or updates of +the arsza by other transactions. Similar
observations apply +to the DMS 1100 implementation o¢f S and SIX
modes. In general, DMS 1100 recognizes all the modes described
here and uses intention modes to detect conflicts but does not

utilizes implicit locking. It uses a static two level lock tree.

DMS 1100 provides 1level 2 consistency by setting exclusive locks
on the modified pages and and a temporary 1lock oan the rpage
corresponding to the page which is "current of run unit". The
temporary lock is released when +the ‘"current of run unit" is
moved. In addition a run-unit can obtain additional locks via an
explicit KEEP command.

The ideas presentad were developed in the process of designing and
implementing an experimental data base system at the IBM San Jose

RPesearch Laboratory. (e wish to emphasize that this system is a
v2hicle for research in data base architecture, and does not
indicate plans for future IBM products.) A subsystem which

provides the modes of locks herein described, plus the necessary
logic to schedule requests and conversions, and to detect and
resolve deadlocks has been implemented as ones component of the

data manager. The lock subsystem is in turn used by the data
manager to automatically lock the nodes of 1its lock graph (see
Figure 5). Usa2rs can be unaware of these lock protocols beyond

the verbs "begin transaction” and "end transactioan".

The data Dbase is broken into several storage areas. Each area
contains a set of relations (files), their indices, and their
tuples(rececrds) along with a catalog of +the area. Each tuple has
a unique tuple identifier (data base key) which can be wused *to
quickly (directly) address the tuple. Each tuple identifier amaps
to a2 set of field values. All tuples are stored tegether in an
area-wide heap +to allow physical clustering of +tuples from

different relations. The unused slots in this heap are
representad by an area-wide pool of free tuple identifiers (i.e.
identifiers not allocated to any relation). Each tuple "belongs"

to a unique rslation, and all tuples in a relation have the sanme
number andi type of £fields. One amay construct an index on any
subset of the fields of a relation. Tuple identifiers give fast
direct acca2ss to tuples, while indices give fast associative
access to field values and +to their corresponding tuples. Each
key value in an index is made a lockable object in order to solve
the problem of "phantoms" [1] without locking the entire index.
He do not =2xplicitly lock individual fields or whole irdices so
those nodes appear in Figure 5 only £for pedagogical reasons.
Figure 5 gives only the "logical" lock graph, there is also a
graph for physical page locks and for other low level resourcses.

As can be seen, Figure 5 is not a tree. Heavy use is nade of the
techniques mentioned in the section on locking DAG's. Fer
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examble, ons can read via tuple identifier without setting any
index locks but to lock a £ield for update its +tuple identifier
and the o0ld and new index key values covering the updated field
must be locked in X mode. ©Purther, the tree is not static, since
data base keys are dynamically allocated to relations; field
values dynamically enter, move around in, and leave index value
intervals when records are inserted, wupdated and deleted;
ralations and indices are dynamically created and destroyed within
areas; and areas are dynamically allocated. Th2 implemantation of
such operations observes the lock protocol presented in the
sectlon on dynamic graphs: When a node changes parents, all old
and new parents must be held (explicitly or implicitly) in
intention exclusive mode and the node to bz moved must be held in
exclusive mode,.

The described system supports concurrently consistency degrees 1,2
and 3 which «can be specified on a transaction basis. In addition
share locks on individual tuples can be acquired by the user.
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